Path Cover and Path Pack Inequalities for the Capacitated Fixed-Charge Network Flow Problem
نویسندگان
چکیده
Capacitated fixed-charge network flows are used to model a variety of problems in telecommunication, facility location, production planning and supply chain management. In this paper, we investigate capacitated path substructures and derive strong and easy-to-compute path cover and path pack inequalities. These inequalities are based on an explicit characterization of the submodular inequalities through a fast computation of parametric minimum cuts on a path, and they generalize the well-known flow cover and flow pack inequalities for the single-node relaxations of fixed-charge flow models. We provide necessary and sufficient facet conditions. Computational results demonstrate the effectiveness of the inequalities when used as cuts in a branch-and-cut algorithm. July 2015; October 2016
منابع مشابه
A Cutting-Plane Algorithm for Multicommodity Capacitated Fixed-Charge Network Design
We improve the mixed-integer programming formulation of the multicommodity capacitated fixed-charge network design problem by incorporating valid inequalities into a cutting-plane algorithm. We use five classes of valid inequalities: the strong, cover, minimum cardinality, flow cover, and flow pack inequalities, the last four being expressed in terms of cutsets of the network. We develop effici...
متن کاملThree-partition Inequalities for Constant Capacity Capacitated Fixed-charge Network Flow Problems
Flow cover inequalities are among the most effective valid inequalities for solving capacitated fixed-charge network flow problems. These valid inequalities are implications on the flow quantity on the cut arcs of a two-partitioning of the network, depending on whether some of the cut arcs are open or closed. As the implications are only on the cut arcs, flow cover inequalities can be modeled b...
متن کاملThree-partition flow cover inequalities for constant capacity fixed-charge network flow problems
Flow cover inequalities are among the most effective valid inequalities for capacitated fixed-charge network flow problems. These valid inequalities are based on implications for the flow quantity on the cut arcs of a two-partitioning of the network, depending on whether some of the cut arcs are open or closed. As the implications are only on the cut arcs, flow cover inequalities can be obtaine...
متن کاملCommodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design
We improve the mixed-integer programming formulation of the multicommodity capacitated fixed-charge network design problem by incorporating valid inequalities into a cutting-plane algorithm. We use five classes of valid inequalities: the strong, cover, minimum cardinality, flow cover, and flow pack inequalities. The first class is particularly useful when a disaggregated representation of the c...
متن کاملFixed-Charge Transportation on a Path: Linear Programming Formulations
The fixed-charge transportation problem is a fixed-charge network flow problem on a bipartite graph. This problem appears as a subproblem in many hard transportation problems, and is also both a special case and a strong relaxation of the challenging bigbucket multi-item lot-sizing problem. In this paper, we provide a polyhedral analysis of the polynomially solvable special case in which the as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 27 شماره
صفحات -
تاریخ انتشار 2017